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Abstract
It is proposed to use the Lie group theory of symmetries of differential equations
to investigate the system of equations describing a static star in a radiative and
convective equilibrium. It is shown that the action of an admissible group
induces a certain algebraic structure in the set of all solutions, which can
be used to find a family of new solutions. We have demonstrated that, in
the most general case, the equations admit an infinite parameter group of
quasi-homologous transformations. We have found invariants of the symmetry
groups which correspond to the fundamental relations describing a physical
characteristic of the stars such as the Hertzsprung–Russell diagram or the
mass–luminosity relation. In this way we can suggest that group invariants
have not only purely mathematical sense, but their forms are closely associated
with the basic empirical relations.

PACS numbers: 97.10.−q, 02.20.Sv

1. Introduction

A modern theory of star interiors and their evolution was founded on the works of Emden, Lane,
Ritter and Kelvin [1]. They studied equilibrium configurations of polytropic and isothermic
gaseous spheres. The important results were obtained by Rudzki [2] who introduced the
notion of homologous transformations. Eddington [3] described the effectiveness of radiation
transport of energy in a star and built the standard model of stellar structure. Chandrasekhar [1]
formulated the homologous theorem known as the Stromgren theorem. Schwarzschild [4]
described the thermonuclear processes as a source of energy of the stars. Some properties of
stellar structure can be expressed in terms of the Lie group theory of symmetries to obtain a
deeper insight into the structure of solution of equation for stars in radiative and connective
equilibrium [5, 6].

One of the main problems in the group analysis of differential equations is the investigation
of properties of the group admissible by the differential equations structure. In the set of all
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solutions the action of an admissible group induces a certain algebraic structure which can be
used to find a family of new solutions from the known ones [7–12].

In the present work, we apply the Lie group theory to investigate group properties of
the system of four structure equations describing Newtonian static stars in radiative and
convective equilibrium. Two of these equations, namely the hydrostatic equilibrium and the
mass continuity equation, were investigated by Collins from the point of view of group theory
[13].

As is well known from Stromgren’s theorem [14], new solutions, for such a system of
equations, can be obtained from the known ones through the homologous transformations.
The new solutions describe new configurations with different masses, radii and chemical
compositions (the so-called homologous stars). We generalize this result by introducing the
notion of quasi-homologous stars, i.e., stars whose equations of state admit quasi-homology
symmetries. The homologous stars are a special case of the quasi-homologous ones. At
the present stage of our investigation, this should be treated as a purely mathematical
result, although it cannot be excluded that the obtained dependences between luminosity
and temperature, mass and temperature and so on could be employed in a manner similar to
that done by Stromgren [14] to fully interpret the Hertzsprung–Russell (HR) diagram.

The energy of the star radiated away from its surface is generally replenished from
reservoirs situated in the very hot central region. The transport of energy is possible due
to the existence of a non-vanishing temperature gradient in the star. The transfer can occur
mainly via radiation, conduction and convection. In any case, photons, nuclei and electrons are
exchanged between hotter and cooler parts where the direction of the energy flow is determined
by the temperature gradient.

The problem of application of symmetry group in the context of equations coming from
astrophysics was considered in our previous papers [5, 6]. This paper is a continuation of
new quasi-homologous symmetries which are present in the structural equations for stars with
convective transport.

2. Mathematical background

In the present work we consider a differential equation system of the following form:

dui

dx
= f i(x, u1, . . . , um) i = 1, . . . , m. (1)

We consider point transformations generated by the infinitesimal operator

X = ξ(x, u1, . . . , um)
∂

∂x
+

m∑
i=1

ηi(x, u1, . . . , um)
∂

∂ui
. (2)

For the infinitesimal operator X there are m independent invariants which are solutions to the
following system (if we assume the analyticity of a field)

dx

ξ(x, u1, . . . , um)
= du1

η1(x, u1, . . . , um)
= · · · = dum

ηm(x, u1, . . . , um)
. (3)

The point transformation generated by X is called homologous if ξ = ax and ηi = giui where
a, gi (i = 1, . . . , m) are constants. Of course, if X ≡ λs(u)∂s then the finite transformation of
symmetry u → ū is given as a solution of equation dūs/dτ = λs(u) with the initial conditions
ūs(τ = 0) = us, s = 1, . . . , m. It can easily be seen that system (1) is similarity invariant in
this case (for a discussion, see [15]).
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A natural extension of this special case leads us to the notion of quasi-homologous
transformations ξ = ξ(x), ηi = ηi(ui), i = 1, . . . , m. System (1) admits the infinitesimal
operator (2) if and only if the following condition is satisfied

∂ηi

∂x
+

m∑
j=1

(
duj

dx

∂ηi

∂uj
− dui

dx

duj

dx

∂ξ

∂x
− dui

dx

∂ξ

∂x

)
− X(f i) = 0. (4)

Condition (4) tells us whether the symmetry operator X is admitted by system (1) [7]. It is
easily seen that, in the case of a quasi-homologous transformation, equation (4) assumes the
form

dηi

dui
− dξ

dx
= X(ln f i). (5)

Now let us consider the space of independent variable x, dependent uα and its first
derivatives, say (uα)′ (α = 1, . . . , m). The action of the Lie group G of the point transformation
in the space (x, u) can be extended to the space (x, u, u′). On the other hand an sth order
(ordinary or partial) differential equation F(x, u(x), u′(x), . . . , us(x)) = 0 defines a certain
manifold M in the space (x, u, u′, . . . , us). We say that F is invariant with respect to the
group G, provided that the manifold M is a fixed point with respect to the sth extension of G,
i.e., Gs(M) = M. In terms of an infinitesimal operator it means that

XsF |F=0 = 0 (6)

where for the case of first-order differential equations

Xs = X + ξα
i (x, u, u′)

∂

∂uα
i

uα
i = ∂uα

∂xi

ξα
i = Di(η

α) − uα
j Di(ξ

j ) Di = ∂

∂xi
+ uα

i

∂

∂uα
.

The prolonged operators, which are generators of symmetry of equations in the space
(x, u), form the structure of the Lie algebra of a fundamental group.

The different method of construction of a partial solution of the system without knowledge
of the fundamental group is based on searching some subgroup which is called a similarity
group, for which the finite transformations are

ūi = aiui x̄α = an+αxα i = 1, . . . , n α = 1, . . . , m

and the Lie algebra is determined by the operator

Xi ≡ ui ∂

∂ui
Xn+α = xα ∂

∂xα

where all coefficients—dilatation coefficient—ai, . . . , an+m are positive. It is easy to find such
a subgroup because all form

aj = (a1)m1j (a2)m2j . . . (ak)mkj j = k + 1, . . . , N.

The invariants of this subgroup are given by

� = (u1)α1(u2)α2 . . . (uN−1)αN−1(uN)αN

where α1, . . . αN are determined from algebraic equations. There is strictly a connection
between the dimensional analysis of equations and in describing its fundamental group.
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3. Quasi-homologous transformations of structure equations with radiative transport

The structure of the equation for a Newtonian star is as follows [4]

dp

dr
= −GMρ

r2
hydrostatic equilibrium (7)

dM

dr
= 4πr2ρ mass continuity (8)

dL

dr
= 4πr2ε(ρ, T ) thermal equilibrium (9)

either
dT

dr
= − 3

16πac

ρ

r2

L

T 3
κ(ρ, T ) radiative equilibrium (10)

or
dT

dr
= �2 − 1

�2

T

p

dp

dr
= �

T

p

dp

dr
adiabatic convective equilibrium (11)

where M is the mass within the sphere of radius r, ρ is the density, p is the pressure, L is
the luminosity at the surface of the sphere of radius r, T is the temperature, ε is the energy
generation rate, κ is the opacity, G is the gravitational constant, c is the velocity of light and a
is the Stefan–Boltzmann constant.

First we consider the case of radiative equilibrium. The equation for energy transport
through the stellar material can be written as a condition for the temperature gradient necessary
for the required energy flow. It supplies the next basic equation for the stellar structure.
Assuming the equation of state in the form p = p(ρ, T ) we can rewrite equation (7) in the
more convenient form

dρ

dr
=

(
∂p

∂ρ

)−1 (
−GM +

3

16πac

L

T 3
κ

∂p

∂T

)
ρ

r2
. (12)

Now, we look for the symmetry transformations of equations (8)–(10) and (12) generated by
the operator

X = ξ(r)
∂

∂r
+ η1(ρ)

∂

∂ρ
+ η2(M)

∂

∂M
+ η3(L)

∂

∂L
+ η4(T )

∂

∂T
. (13)

If we denote

f = −GM +
3

16πac

L

T 3
κ

∂p

∂T

equations (5) for quasi-homologous transformations take the form

dη1

dρ
− dξ

r
= −2ξ

dr
+

η1

ρ
− η1 ∂

∂ρ

(
ln

∂p

∂ρ

)
+

η1

f

[
3

16πac

L

T 3

∂

∂ρ

(
κ

∂p

∂T

)]
− Gη2

f

+
η3

f

(
3

16πac

κ

T 3

∂p

∂T

)
+

η4

f

[
−∂

∂T

(
ln

∂p

∂ρ

)
+

3L

16πac

∂

∂T

(
κ

T 3

∂p

∂T

)]
(14)

dη2

dM
− dξ

dr
= 2ξ

r
+

η1

ρ
(15)

dη3

dL
− dξ

dr
= 2ξ

r
+

η1

ρ
+

η1

ρ

∂ε

∂ρ
+

η4

ε

∂ε

∂T
(16)
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dη4

dT
− dξ

dr
= −2ξ

r
+

η1

ρ
+

η1

κ

∂κ

∂ρ
+

η3

L
+ η4

(
− 3

T
+

1

κ

∂κ

∂T

)
. (17)

Since the right-hand side of equation (15) depends only on ρ, η1 = α1ρ, where α1

is constant. It is easy to verify, by the same argument and by substitution into equations
(14)–(17), that also

η2 = α2M η3 = α3L ξ = 1
3 (α2 − α1)r

where α2, α3 are constant. By substituting these equations into system (14)–(17) one obtains

(
dη4

dT
− 2

3
α2 − 4

3
α1

)
∂p

∂T
+ α1ρ

∂2p

∂ρ∂T
+ η4 ∂2p

∂T 2
= 0 (18)

− 2

3
α2 − 1

3
+ α1ρ − ln

∂p

∂ρ
+ η4 ln

∂p

∂T
= 0 (19)

4

3
α1 − 1

3
α2 + α3 − dη4

dT
+ α1

ρ

κ

∂κ

∂ρ
+

(
− 3

T
+

1

T

∂κ

∂T

)
= 0 (20)

(α3 − α2)ε = α1ρ
∂ε

∂Tρ
+ η4 ∂ε

∂T
. (21)

Equations (20) and (21) imply that the opacity coefficient κ and the energy generation rate ε

are determined by the property of quasi-homologous temperature transformation generated by
the component η4(T )∂/∂T . This gives us the following solutions:

φ

{
ρ exp

(
−α1

∫ T

T0

dt

η4

)
, κ exp

[∫ T

T0

dt

η4

(
dη4

dt
− 3η4

t
+

α2

3
− 4α1

3
− α3

)]}
= 0 (22)

ψ

{
ρ exp

(
−α1

∫ T

T0

dt

η4(t)

)
, ρεα1/(α3−α2)

}
= 0 (23)

where φ, ψ are arbitrary functions. Instead of form (22), equivalent and useful forms of
representation of solutions (22) and (23) can be used in the further analysis [16], namely

κ(ρ, T ) = exp

[∫ T

T0

dt

η4

(
dη4

dt
− 3η4

t
+

α2

3
− 4α1

3
− α3

)]
f

(
1

ρ
exp

(
α1

∫ T

T0

dt

η4

))
(24)

ε(ρ, T ) = ρ(α3−α2)/α1g

(
ρ−(α3−α2)/α1 exp

(
(α3 − α2)

∫ T

T0

dt

η4

))
(25)

where f and g are arbitrary functions.
It still remains to solve equations (18) and (19). Since we have some freedom in choosing

the equation η4(T ), and the function p(ρ, T ) is never precisely known, we look for those
equations of state p = p(ρ, T ) that are enforced by the transformations generated by
operator (2). It is easy to check by using equations (18) and (19) that p = p(ρ, T ) satisfies
the continuity condition ∂2p/∂T ∂ρ which in fact is a consistency condition for (18) and (19).
Depending on the hyperbolic or parabolic character of equations (18) and (19) four cases can
be distinguished. Let us discuss the solutions for these cases.
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3.1. Case I

X = α2 − α1

3
r
∂

∂r
+ α1ρ

∂

∂ρ
+ α2M

∂

∂M
+ α3L

∂

∂L
+ η4(T )

∂

∂T
.

The standard method of reduction to the canonical form, when applied to equation (19), gives
∂2p(x, T )

∂x∂T
= 4α1/3 + 2α2/3

η4(T )

∂p

∂x
(26)

where

x = ρ exp

(
−α1

∫ T

T0

dt

η4(t)

)
.

In this case, the general solution of equation (26) assumes the form [16]

p(x, T ) = h(T ) +
∫ x

x0

g(ζ ) dζ exp

(∫ T

T0

4α1/3 + 2α2/3

η4(T )

)
(27)

where h(T ) is of C2 class and g(ζ ) is of C1 class of differentiability.
By substituting the general solution (27) into equation (18) we obtain the additional

condition for h(T )

η4(T )h′′(T ) +

(
4

3
α1 +

2

3
α2 − dη4

dT

)
h′(T ) = 0. (28)

The solution of this equation is

h(T ) = C1

∫ T

exp

(∫ τ
(

4

3
α1 +

2

3
α2

)
dt

dη

)
dτ

η4(τ )
+ C2 (29)

where C1 and C2 are constants.
This solution implies that in equation (27) there is still the freedom in choosing a function

g = g(ζ ).

3.2. Case II

X = α2 − α1

3
r
∂

∂r
+ α2M

∂

∂M
+ α3L

∂

∂L
+ η4(T )

∂

∂T
.

By proceeding in the same way as in the previous case we obtain

p(ρ, T ) = h(T ) +
∫ ρ

g(ρ ′) exp

(∫ T 2α2

3η4(t)
dt

)
dρ ′ (30)

where

h(T ) = C1

∫ T

exp

(
2

3
α2

∫ τ dt

η4(t)

)
dτ

η4(τ )
+ C2 (31)

where h, g satisfy differentiability conditions as in the previous case and C1, C2 are constants.

3.3. Case III

X = α2 − α1

3
r
∂

∂r
+ α1ρ

∂

∂ρ
+ α2M

∂

∂M
+ α3L

∂

∂L
.

Similar calculations give

p(ρ, T ) = h(ρ) +
∫ T

ρ4/3+2α2/3α1g(t) dt (32)

where

h(T ) = C1ρ
4/3+2α2/3α1 + C2 (33)

where h, g satisfy the differentiability conditions as previously and C1, C2 are constants.
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3.4. Case IV

X = α2 − α1

3
r
∂

∂r
+ α2M

∂

∂M
+ α3L

∂

∂L
.

In this case we have the following solutions:

p = p(ρ, T ) α2 = 0. (34)

We can construct finite transformations and group invariants. In case I, for example, we
obtain four independent invariants L0,M0, r0 and ρ0

L0 = L exp

(
−α3

∫ T dt

η4(t)

)
M0 = M exp

(
−α2

∫ T dt

η4(t)

)
(35)

r0 = r exp

(
α1 − α2

3

∫ T dt

η4(t)

)
ρ0 = ρ exp

(
−α1

∫ T dt

η4(t)

)
.

By using these invariants, we can construct the new families of solutions, for instance

(i) if L(T ) is the solution of (12), (8), (9) and (10), then also

L(E(T )) exp

(
−α3

∫ E(T )

E(T0)

dt

η4(t)

)

is the solution, where E(T ) is a finite transformation of T, given from the solution
T̄ = E(T ) of equation dT̄ /dτ = η4(T̄ ) with the initial condition T̄ (τ = 0) = T .

(ii) if M(T ) is the solution of (12), (8), (9) and (10), then also

M(E(T )) exp

(
−α2

∫ E(T )

E(T0)

dt

η4(t)

)

is the solution.

4. Homologous symmetry transformations of structure equations with radiative
transport

It is well known that equations (12), (8), (9) and (10) admit similarity symmetries for the
equation of state of an ideal gas, p ∼ ρT . This fact induces a certain class of homologous
solutions to the system. Some classical results were obtained by Stromgren [14].

In order to investigate how general our results are, let us assume the rescaling symmetry
η4(T ) = α4T . Then, in case I, for instance, the following equation of state is enforced:

p(x, T ) = C1T
(4α1+2α2)/3α4

4
3α1 + 2

3α2 + α4
+

∫ x

x0

g(ζ ) dζ
T 1+(4α1+2α2)/3α4

4
3α1 + 2

3α2 + α4
. (36)

One should note that equation (36) contains the following form of the equation of state:

p = aρA + bT B + cρCT D.

The infinitesimal operator corresponding to the homologous transformations takes the
form

X = α2 − α1

3
r
∂

∂r
+ α1ρ

∂

∂ρ
+ α2M

∂

∂M
+ α3L

∂

∂L
+ η4(T )

∂

∂T
. (37)

The operator given by equation (37) has four independent invariants, for instance

J1 = ρr3α1/(α1−α2) J2 = ρM−α1/α2 J3 = LMα3/α2 J4 = LT −α3/α4 .
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By using these invariants we can arrive at various homology theorems, for example
the theorem associated with J1: if ρ(r) is the solution of (12) and (8)–(10), then
ρ{r exp[(α2 − α1)/3]} exp(−α1) is also the solution.

From J3 we obtain L ∼ Mα3/α2 that corresponds to the well-known Eddington mass–
luminosity dependence. Infinitesimal operator (37) generates a Lie algebra spanned by the
basic operators

X1 = −1

3
r
∂

∂r
+ ρ

∂

∂ρ
X2 = 1

3
r
∂

∂r
+ M

∂

∂M
X3 = L

∂

∂L
X4 = T

∂

∂T
. (38)

We now briefly present the basis operators for some particular cases that are important
from the physical point of view.

(i) Photon gas, p ∼ T 4

X1 = − r

3

∂

∂r
+ ρ

∂

∂ρ
+

T

3

∂

∂T
X2 = r

3

∂

∂r
+ M

∂

∂M
+

T

6

∂

∂T
(39)

X3 = L
∂

∂L
X4 = 0.

(ii) Ideal gas, p ∼ ρT

X1 = − r

3

∂

∂r
+ ρ

∂

∂ρ
+

T

3

∂

∂T
X2 = r

3

∂

∂r
+ M

∂

∂M
+

T

6

∂

∂T
(40)

X3 = L
∂

∂L
X4 = 0.

(iii) Degenerate gas, p ∼ ρ5/3

X1 = − r

6

∂

∂r
+ ρ

∂

∂ρ
+

M

2

∂

∂M
X2 = 0 X3 = L

∂

∂L
X4 = M

∂

∂M
. (41)

(iv) Relativistic degenerate electron gas, p ∼ ρ4/3

X1 = − r

3

∂

∂r
+ ρ

∂

∂ρ
X2 = L

∂

∂L
X3 = 0 X4 = M

∂

∂M
. (42)

(v) Ideal and photon gas

X1 = − r

3

∂

∂r
+ ρ

∂

∂ρ
+

T

3

∂

∂T
X2 = 0 X3 = L

∂

∂L
X4 = 0. (43)

It is interesting to note that the Eddington mass–luminosity dependence is not satisfied
any longer, as there are no non-trivial invariants associated with M.

(vi) Ideal and degenerate gas

X1 = − r

6

∂

∂r
+ ρ

∂

∂ρ
+

M

2

∂

∂M
+

2T

3

∂

∂T
X2 = 0 X3 = L

∂

∂L
X4 = 0.

(44)

5. Quasi-homologous stars with convective transport

We start the analysis of stars with convection from equations (7)–(9) and (11) which describe
the Newtonian static star with convective transport energy. The convective transport of energy
means an exchange of energy between hotter and cooler layers through the exchange of
macroscopic mass elements, the hotter of which move upwards while the cooler ones descend.
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By analogy with the previous analysis instead of equation (11), it would be useful to
operate the new equation that can be constructed if we assume the form of the equation of
state p = p(ρ, T ). Then we obtain

dρ

dr
=

(
∂p

∂ρ

)−1 (
−1 + �(ρ, T )

T

p

∂p

∂T

)
GMρ

r2
= f

(
∂p

∂ρ

)−1
GM

r2
. (45)

We search for the symmetry operator in form (13) for system (7)–(9) and (11). After extension
of operator (13) on the first derivatives we obtain the equations admissible for this operator X′

in the form

dη1(ρ)

dρ
− dξ(r)

dr
= X(ln f 1) = −2ξ(r)

r
+

η1(ρ)

ρ
− η4 ∂

∂T
ln

(
∂p

∂ρ

)
+

η2(M)

M

− η1 ∂

∂ρ
ln

(
∂p

∂ρ

)
+

η1(ρ)

f

(
T

p

∂p

∂T

∂�

∂ρ
+ �

T

p

∂2p

∂T ∂ρ
− �T

p2

∂p

∂T

∂p

∂ρ

)

+
η4(T )

f

[
T

p

∂�

∂T

∂p

∂T
+

�

p

∂p

∂T
− �T

p2

(
∂p

∂T

)2

+
�T

p

∂2p

∂T 2

]
(46)

dη2(M)

dM
− dξ(r)

dr
= X(ln f 2) = 2ξ(r)

r
+

η1(ρ)

ρ
(47)

dη3(L)

dL
− dξ(r)

dr
= X(ln f 3) = 2ξ(r)

r
+

η1(ρ)

ρ
+

η1

ε

∂ε

∂ρ
+

η4

ε

∂ε

∂T
(48)

dη4(T )

dT
− dξ(r)

dr
= X(ln f 4) = −2ξ(r)

r
+

η2(M)

M
+

η1

ρ
+

η1

�

∂�

∂ρ

− η1

p

∂p

∂ρ
+ 2

η4

�

∂�

∂T
+

η4

T
− η4

p

∂p

∂T
. (49)

From equation (48) we obtain η3(L) = α3L, where α3 is constant and equation (47) gives
us the linear relation η2(M) = α2M + β2 and η1(ρ) = α1ρ, where α1, α2, β2 are constant.
Then equation (48) determines the constraint equation in the form

dξ(r)

dr
+

2ξ(r)

r
= α2 − α1 (50)

which can be easily integrated and we obtain

ξ(r) = α2 − α1

3
r +

C

r
. (51)

After substituting the above solution into equations (46) and (49) we finally obtain that constant
C in (51) must vanish.

Then from equation (48) we obtain

α1ρ
∂ε

∂ρ
+ η4(T )

∂ε

∂T
− (α3 − α2)ε = 0 (52)

which can be integrated by using the standard characteristic method. The invariants are
determined from the characteristic equation

dρ

α1ρ
= dT

η4(T )
= dε

(α3 − α2)ε

where we assume that α3 − α2 �= 0 then

C1 = ρ(α3−α2)/α1

ε
C2 =

exp
[
(α3 − α2)

∫ T dT
η4(T )

]
ε

. (53)
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It is well known that the general solution of equation (52) can be given in the form of any
function ψ of its invariants, i.e.

ψ

(
ρ(α3−α2)/α1

ε
,

exp
[
(α3 − α2)

∫ T dT
η4(T )

]
ε

)
= 0. (54)

Following Sundman there is the equivalent form of the general solution in which the production
energy function can be given in the exact form, namely

ε = ρ(α3−α2)/α1g

(
exp

[
(α3 − α2)

∫ T dT
η4(T )

]
ρ(α3−α2)/α1

)
. (55)

From (46) or (49) we obtain that

η3(M) = α2M + β2

and β2 = 0.
Therefore all components of operator X except η4(T ) are determined

ξ(r) = α2 − α1

3
r η1(ρ) = α1ρ η2(M) = α2M η3(L) = α3L. (56)

In our further analysis we assume that � = �0 = const. This assumption simplifies our
calculations but we must remember that in general � = d ln T/d ln p. (If the energy transport
is due to radiation and conduction then � must be replaced by �rad = 3κLp/16πacGmT 4.)
This property is destroyed if the material function, instead of being products of power p and T
contains additive terms as in the general case with the equation of state. The simplest example
is the addition of radiation to ideal gas such that p = RρT/µ + aT 4/3 = pg + pr. No strict
homology (quasi-homology) relation is then possible. But one can try to make the enlarged
system of equations in which the equation for dβ/dr is added (β = pg/p). The corresponding
equation is

dβ

dr
= β

d

dr
ln

(
R
µ

ρT

p

)
= β

d

dr
ln

(
ρ�

p(ρ, T )

)
. (57)

Now β is not constant and in equation (57) the relations determining dρ/dr, dT/dr and
dp/dr should be substituted. As a result we obtain that the enlarged system admits the
homology relation.

Because we focus on the simplest possible case the problem with constant � is considered.
For � = �0, equation (46) assumes the form

α2 − α1

3
= α2 − α1ρ

∂

∂ρ
ln

(
∂p

∂ρ

)
− η4 ∂

∂T

(
ln

∂p

∂ρ

)
+

α1ρ

f

(
�0T

p

∂2p

∂ρ∂T
− �0T

p2

∂p

∂T

∂p

∂ρ

)

+
η4(T )

f

[
�0

p

∂p

∂T
− �0T

p2

(
∂p

∂T

)2

+
�0T

p

∂2p

∂T 2

]
. (58)

Quite similarly we can write equation (49) in the constant � and we have

dη4(T )

dT
− α2 − α1

3
= −2

3
(α2 − α1) + α1 + α2 +

η4(T )

T
− α1ρ

p

∂p

∂ρ
(59)

or

α1ρ
∂p

∂ρ
+ η4(T )

∂p

∂T
=

(
−dη4

dT
+

η4

T
+

4α1 + 2α2

3

)
p.
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The solution of equation (59) can be given in the form of an arbitrary function ψ of its
invariants, namely

ψ

(
ρ−1 exp

(∫ T α1

η4
dt

)
, p−1 exp

(∫ T dt

η4

(
−dη4

dt
+

η4

t
+

4α1 + 2α2

3

)))
= 0 (60)

or

p(ρ, T ) = exp

(∫ T dt

η4

(
−dη4

dt
+

η4

t
+

4α1 + 2α2

3

))
g

(
ρ−1 exp

(∫ T α1

η4
dt

))
. (61)

After substituting the corresponding terms into (59) from the exact formula for p(ρ, T ),
the following condition must be fulfilled

dη4

dT
− η4

T
− �0T

(
−dη4

dT
+

η4

T
+

4α1 + 2α2

3

)
1

η4

dη4

dT

−�0T η4
∂

∂T

[(
−dη4

dT
+

η4

T
+

4α1 + 2α2

3

)
1

η4

]
= 0. (62)

The above relation reduces to the simpler form

d2η4

dT 2
+

1 − �0

�0

1

T

(
dη4

dT
− η4

)
= 0. (63)

The solution of the above equation for any �0 can be obtained if we substitute η4 ≈ T x . Then

x1 = 1 x2 = �0

�0 − 1
(64)

and finally we have

η4 = C1T + C2T
(�0−1)/�0 (65)

where C1 and C2 are constants.
Therefore, we find that for the general form of the equation of state, the quasi-homology

symmetry is admitted by the stellar structure, e.g. with convective transport, i.e., the operator
of this symmetry is

X = α2 − α1

3
r
∂

∂r
+ α1ρ

∂

∂ρ
+ α2M

∂

∂M
+ α3L

∂

∂L
+ C1T + C2T

(�0−1)/�0
∂

∂T
. (66)

As a special case for C2 = 0 we find that homologous symmetry is obvious and p =
T (4α1−2α2)/3α4g

(
T α1/α4

g

)
.

The non-trivial class of quasi-homologous (and homologous) relations can be obtained
from the invariants. For example, from the invariant J1 such that

dL

α3L
= dT

C1T + C2T (�0−1)/�0
J1 = L(T ) exp

(
−α3

∫ T dτ

C1τ + C2τ (�0−1)/�0

)
. (67)

It is possible to obtain a new class of solutions from the known ones which can be treated
as a better reconstruction of the main sequence in the HR diagram by using only theoretical
assumptions.

6. Quasi-homologous stars with convective transport

As the simplest example let us consider a star filled by radiation, i.e., p(ρ, T ) = aT 4, � =
�0 = 1

4 , g = 1, then

X = α2 − α1

3
r
∂

∂r
+ α1ρ

∂

∂ρ
+ α2M

∂

∂M
+ α3L

∂

∂L
+ (C1T + C2T

−3)
∂

∂T
. (68)
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The important quasi-homologous theorem useful in the generation of a solution from
the known ones can be formulated in the following way. If L(T ) is a solution of the stellar
structure equation in a convective equilibrium, then

L(T ′) exp

(
−α3

∫ T ′
dτ

C1τ + C2τ−3

)
= const (69)

is also a solution, where T ′ = E(T ) is a finite transformation which is determined as a solution
of equation ∫ T ′

dT

C1T + C2T −3
= τ

and T ′(τ = 0) = T .
After integration we obtain the exact form of the finite transformation

T ′ = E(T ): C1(T
′)4 + C2 = (C1T

4 + C2) e4C1τ .

This procedure can be repeated in the more general case of constant �0. Then we obtain

T ′ = E(T ): C1(T
′)1/�0 + C2 = (C1T

1/�0 + C2) eC1τ/�0 .

7. Conclusion

We investigated symmetries for the equations of state of ideal gas, polytropic gas, photon gas,
degenerated gas, as well as some mixed cases, and found the most general form of quasi-
homologous transformation admitted by the system of equations describing Newtonian static
stars. In considering the invariants of the symmetry groups we noted that they correspond to
the relations describing physical characteristics of the stars, such as the Hertzsprung–Russell
diagram or the mass–luminosity relation. The group invariants make possible the construction
of quasi-homologous theorems analogous to the Chandrasekhar homologous theorems, which
provide a prescription for deriving new classes of solutions from the present known solutions.

We characterized, by computing infinitesimal operators, the structure of the group
admissible by a system of equations describing Newtonian static stars in radiative and
convective equilibrium. We have shown that, in the most general case, the equations admit
an infinite parameter group of quasi-homologous transformations. These symmetries enforce
appropriate equations of state. In the particular case of a five parameter homologous group
the Stromgren results are recovered.

The equations of state (36) and (61) and parametrization of energy production and capacity
are very general. They contain both physical and non-physical situations. Our results suggest
that group invariants do not always have purely mathematical sense, but that their existence is
closely associated with basic empirical facts such as the Hertzsprung–Russell diagram or the
Eddington mass–luminosity dependence. The fact that the main sequence in the Hertzsprung–
Russell diagram can be reconstructed from the invariants proved the effectiveness of the group
analysis of fundamental equations of astrophysics. We indicated this in two examples on the
main sequence models and radiative and convective transport. The main result is that except
for classical homology there is another type of quasi-homologous symmetry which can be
applied to certain red giants (see [17, section 32.2]).

Due to the existence of a new ‘similarity’ between different solutions, the quasi-homology
relation offers qualitative but helpful indication for interpreting or predicting the numerical
solutions.
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